Application of the draft EUREF protocol for Quality Control of digital breast tomosynthesis (DBT) systems

Nicholas Marshall and Hilde Bosmans

Department of Radiology, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
Quality Control Protocol

- EUREF group has produced a draft protocol
 - Latest version 0.14 sent in February 2014
 - Gives the scope of the protocol, defines DBT systems and gives tests for quality control of DBT systems

- North American guidance
 - AAPM TG 245 Task Group on Tomosynthesis Quality Control

- IEC standard in preparation
Outline of protocol

- DBT protocol assumes that standard FFDM tests are performed prior to DBT tests

- DBT tests broken down by component in the protocol
 - X-ray generation
 - AEC system
 - Image receptor
 - Image quality of the reconstructed image
 - Dosimetry for DBT systems
Typical geometry for DBT systems

- Tube rotates over a limited scan angle range (15° to 50°, depending on system)
- Projection images acquired (between 9 and 25)
- Focus can be moving or static during the exposure depending on manufacturer
- Detector stationary (patented geometry) or tilted slightly
- Images reconstructed typically to 0.5 mm or 1.0 mm plane spacing
Systems tested

- Siemens and Hologic: moving focus; no grid
- GE: step-and-shoot with a grid
- Other systems available include IMS Giotto and Planmed Nuance
- Philips have a DBT system based on the Microdose (different geometry) – not currently sold
Practical points

- **Time in the room**
 - Between 60 and 180 minutes required to acquire and transfer images
- **Storage requirement**
 - Between ~22 GB and 65 GB of data generated
- **Image availability**
 - Siemens saves projections and planes (as CT sequence) in two separate folders
 - GE saves planes in a single file (files can be up 1,8 GB)
 - Hologic saves planes as a CT sequence – currently no access projections unless you have ‘mview.exe’ from Hologic
- **Image retrieval and analysis** can be time consuming
X-ray generation

- Protocol specifies a 0° stationary mode for x-ray output, tube voltage, HVL and dose measurements
 - Hologic has this mode readily available from menu
 - For GE, go to a command window and use telnet to start 0° stationary mode
 - Siemens does not have 0° stationary mode (yet)

- Siemens can be tested in 2D (planar) mode as W/Rh used for planar and DBT modes (same thickness of Rh filter for DBT and planar mode)
AEC system

• Test uses PMMA and the 0,2 mm Al square (2D planar)
 – Practical but is this an appropriate test object?
• AECs for the three systems are reproducible
• Measurements of SDNR made in projections and the planes (protocol v0,10)
 – Changed to just projection data (v0,14)
AEC system

- GE Essential
 - Similar behaviour DBT projections as for 2D planar
 - Unusual behaviour of SDNR in the DBT planes
 - System has an antiscatter grid and iterative reconstruction
- SDNR no longer calculated from the tomo planes

![Graphs showing relative SDNR vs PMMA thickness for different systems](image)
Image receptor - response

- Detector gain increased in tomo mode
- Typical detector air kerma ~20 µGy (cf 80 µGy for 2D)
Image receptor - response

- Measured from the first projection
 - this is to limit the influence of lag and ghosting
 - GE Essential has ~no lag
Image receptor - noise

- Systems are still quantum limited, despite the low detector exposure, due to the higher detector gain.
Image receptor – sharpness of projections

- Measured with standard edge, placed as fn height above the breast table
- For DBT with moving tube, MTF in projection images is anisotropic due to focus motion
- No sharpness penalty for step-and-shoot systems

Marshall NW and Bosmans H 2012 Measurements of system sharpness for two digital breast tomosynthesis systems Phys Med Biol 57, 7629-7650
Image receptor – sharpness of projections

- Hologic saves binned (2x2) projections – binning unsharpness dominates over tube motion at positions closer to the detector
- Strong differences in sharpness between the systems
Image receptor – uniformity [not in protocol]

- Detector uniformity varies with projection
- Flat field correction is made in the 0° projection only
 - Same behaviour for all three systems
Image quality of the reconstructed image

- Z-resolution
 - Measured with a 1,0 mm Φ Al sphere
 - Can also be measured with thin angled wire

- Test designed to estimate the ability of a system to localize anatomical clutter to a given plane
- Does FWHM capture differences between systems?

<table>
<thead>
<tr>
<th>DBT system</th>
<th>FWHM (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siemens</td>
<td>4.6</td>
</tr>
<tr>
<td>Hologic</td>
<td>5.4</td>
</tr>
<tr>
<td>GE</td>
<td>4.8</td>
</tr>
</tbody>
</table>
Image quality of the reconstructed image

- Z-resolution
- Protocol specifies a Gaussian fit to the profile – valid?
- Does not characterize the tails in the response
- Gaussian is a symmetric function – but some asymmetry is often seen in measured data

Hologic Dimensions
Image quality of the reconstructed image

- In-plane sharpness
 - MTF measured using 25 µm Φ W wire
 - Wire supported using a 0,5 mm PMMA plate
- Sharpness an-isotropy seen in the projections follows through to planes
Image quality of the reconstructed image

• Example for tube-travel direction
 – MTF in-plane seems to follow MTF in projections

• MTF is important aspect of IQ but not the final word

• Detectability is determined by signal to noise ratio (SNR)
 – Depends on system noise, anatomical noise, sharpness, target (size, shape, position etc)
Image quality of the reconstructed image

- Stability of the reconstructed image
- CDMAM suggested in the protocol
 - Other test objects can be used
- Assesses sharpness and noise in-plane (detail SNR)
- Not final IQ test object
 - Flat test object (position in-plane?)
 - Gold cylinders (wide angle systems)
 - CDCOM ok?
 - No overlying anatomy -> does not test ability of system to suppress overlying anatomical noise
Image quality of the reconstructed image

- Make sure that the plane with lowest threshold gold thickness is assessed
 - This can be time consuming
 - May change if different test equipment (PMMA) is used
- Important to be consistent
 - Image stability test
Image quality of the reconstructed image

- Hologic Selenia Dimensions CDMAM image (plane) is non-uniform
- This will be defeat CDCOM (in fact, CDCOM needs validation)
- A flatfield correction can be applied before scoring with CDCOM
 - The NCCMP (Guildford UK) apply a Butterworth (high pass) filter
 - Not ideal - is this a benign processing step?
- CDCOM uses tag {0018,1164} (Imager Pixel Spacing)
 - CDCOM fails for GE tomo planes
 - The GE DBT system populates tag {0018,7022} (Detector Element Spacing) with pixel spacing for the plane
 - Need to fill tag {0018,7022} with the pixel size and save as DICOM
Dosimetry for DBT systems

• Protocol uses a modified version of the 2D planar formula given by David Dance:

\[MGD = K g c s T \]

– \(T \) is an average tomo factor, averaged from (‘t’) factors calculated for each projection angle in the scan
– The \(T \) factor depends on the geometry (scan range)

<table>
<thead>
<tr>
<th>PMMA (mm)</th>
<th>tomo factor for -7.5° to 7.5° scan range</th>
<th>tomo factor for -25° to 25° scan range</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.997</td>
<td>0.971</td>
</tr>
<tr>
<td>30</td>
<td>0.996</td>
<td>0.964</td>
</tr>
<tr>
<td>40</td>
<td>0.996</td>
<td>0.959</td>
</tr>
<tr>
<td>45</td>
<td>0.995</td>
<td>0.956</td>
</tr>
<tr>
<td>50</td>
<td>0.994</td>
<td>0.956</td>
</tr>
<tr>
<td>60</td>
<td>0.994</td>
<td>0.954</td>
</tr>
<tr>
<td>70</td>
<td>0.992</td>
<td>0.952</td>
</tr>
</tbody>
</table>

Dosimetry for DBT systems

- Systems lie below the 2D Acceptable level
- It is not clear that 2D dose limit should directly apply to DBT
 - What is the fundamental source of the 2D Acceptable level? (related to previous technology or a risk calculation etc.)
Dosimetry for DBT systems

- Hologic has dose boost at 50 mm and above
- Siemens has systematically higher dose than 2D planar
- GE have chosen to set same level for DBT and 2D planar (there is a grid for both modes)
Conclusions

- Protocol offers a reasonable performance evaluation of DBT systems
 - Overtesting in early versions of the draft?
- Time consuming to apply, generates large quantities of data, analysis is slow
- Not all systems have modes specified in the protocol (0° stationary tube, available projection images)
- Perhaps the emphasis of the tests should be changed: in depth testing at Acceptance with fewer routine tests?
- There is not yet a 3D image quality test with relevant structures (mass-like; calc-like) in a relevant (anatomical structure) background
Acknowledgement

- Euref team
- LUCMFR, Leuven
- The help of manufacturers for discussion and to get access to the data